## Wednesday, August 31, 2016

• Wednesday, August 31, 2016
• • ,
• No comments

Roll No.
Total No. of Questions : 07
BBA (Sem.–3rd)
Subject Code : BB-304
Paper ID : [C0216]
Time : 3 Hrs.
INSTRUCTION TO CANDIDATES :
1. Section –A, is Compulsory.
2. Attempt any four questions from Section-B.

Section –A
Ql)
a) Write the type of classification of data.
b) Define tabulation of data.
c) The average marks scored by 10 students are 35. Later the moderator
awarded 2 grace marks to 4 students each and 1 grace marks to 2 students
each. Find the average marks after moderation.
d) Prove that the product of the ratios of each of the 'n' observations to the
Geometric mean is always unity.
e) Write the characteristics of a good measure of Dispersion.
f) If the standard deviation of a set of observations is zero, then all
observations are equal. Comment.
g) ' Write Karl Pearson's method to find coefficient of correlation.
h) The lines of regression of Y on X and X on Y are resp. Y:X + 5 and
l6X - 9Y:94. Find the variance of X if the variance of Y is i6.
i) Write the components of Time Series.
j) Write the formula to find Fisher's Ideal Index number.

Section -B

Q2) From the following data, calculate the values of the upper and lower quartiles,
D2/ Pro30.
Marks :   Below 10          10-20  20-40 40-60  60-80  Above 80
No .of :       8          10       22     25     10                    5
Students
3.Find the standard deviation of (2n+l) terms of an A.P.
4.Two supervisors ranked as follows 12 workers working under them in order
of efficiency.
Worker :          1      2     3    4    5    6     7    8  9    10     11   12
Supervisor l :   5       6    1    2    3  8.5  8.5   4  7    11     10    12
Supervisor ll:   5.5    5.5   2   2    2    9    7     4   8   10.5   12   10.5
Calculate Spearman's Rank correlation coefficient.
Q5) Obtain the lines of regression and show them on graph for the following :
X:1         2        3        4        5        6        7        8        9
Y : 2        6       7        8       10     l1      11     20     9

Q6) Fit a parabolic trend y: a + bx * cx2 to the following data where y denotes the output in thousand unit.
Year : l99l       1992  1993 1994          1995  1996          1997  1998          1999
Y                    2                     6         7        8       10      11      11      20      9
Also compute the trend values. Estimate the values for 2000.

Q7) Define Normal and Poisson distributions in detail