## Sunday, February 14, 2016

• Sunday, February 14, 2016
• • ,
• No comments

Roll  No………………….
Total  No.  of  Questions  :  07

BBA  (Sem.–1st)
Subject  Code  : BB-102    (2007 to 2011 Batch)
Paper  ID  :  [C0202]

Time  :  3  Hrs.                                                             Max.  Marks  :  60

INSTRUCTION  TO  CANDIDATES  :

1.       SECTION-A  is  COMPULSORY  consisting  of  TEN  questions  carrying
TWO  marks  each.
2.       SECTION-B  contains  SIX  questions carrying  TEN marks  each  and  students has  to  attempt  any  FOUR  questions.
SECTION-A
a.       What do you mean by Differentiation from first principle?
b.       Define adjoint of a matrix.
c.       Write a note on unit matrix.
d.       What do you understand by difference of two sets?
e.       Define limits of a function f(x).
f.       If  the  roots of the equation  2x2  + 8x – m3 = 0 are equal.  What is  the value  of m?
g.       The  sum  of  two  numbers  is  52  and  their  difference  is  2.  Find  the numbers.
h.       Which  term of  the  progression –1, –3, –5  __________ is  –39?
i.        What will be the number of subsets of a set containing n elements?
j.        If xy = 1 then what will be the value  of y2 + dy/dx?

SECTION-B
2.       a)       Define linear and quadratic equations.
b)      A firm processes x tonnes of output at a total cost
C  =  Rs{l/10x3  – 5x2  + 10x  + 5}.
At what level of output will the marginal cost and the average variable cost attain their respective minima?
3.       a)      Differentiate: ex+ l/ex –1
b)      Find dy/dx of y  = x3(log x)2
4.       In  a  school  28  students  were singers,  30  table  players,  42  flute  players. Out  of  this  population  of  100  students,  15  could  sing  and  play  table, 20 table and flute, 15 singing and flute and 5  could all the three. Find out how many students were not playing all the three?
5.       Solve the following simultaneous system using matrices:
2x1   –  4x2  + 3x3  =  3
4x1   –  6x2  + 5x3 =  2
–2x1  + x2  –  x3  =  1
6.       a)       Twenty  books  are  placed  at  random in  a  shelf.  Find  the   probability that a  particular Pair of books shall be: (5)
i)       Always together.
ii)      Never together.
b)      Insert 4 arithmetic means between 4  and 324. (5)
4, -, -, -, -, 324

7.       If  the  roots  of  the  equation  p  (q  –  r)x2  +  q(r-p)x  +  r(p  –  q)  =  0  are equal  show that  2/q =  1/p  +  1/r.