## Download Question Paper of "Data Structures Through C 2 BSC(IT)" , Question Paper of BSC(IT) 2nd Semester, Subject Code : BS-108, Paper ID B0408, Paper 4

• Wednesday, June 29, 2016
• • ,
• No comments

Roll  No..............
Total  No.  of  Questions  :  07

B.Sc.  (IT)  (Sem.–2nd)
DATA  STRUCTURES  THROUGH  C
Subject  Code  : BS-108
Paper  ID  :  [B0408]
Time  :  3  Hrs.
INSTRUCTION  TO  CANDIDATES  :
1. SECTION-A  is  COMPULSORY  consisting  of  TEN  questions  carrying TWO  marks  each.
2. SECTION-B  contains  SIX  questions carrying  TEN marks  each  and  students has  to  attempt  any  FOUR  questions.

SECTION-A

(a) What is a data structure? Mention the various types of data structures.
(b) What is an array? Give  the formula to find the  address of a particular location in the array.
(c) What is a circular queue? How it differs from linear queue?
(d) Give the  postfix  form of an expression: (a -  b *  c + d)  / (e +  f)
(e) What is a doubly linked list?
(f) Give the linked memory representation of a binary tree.
(g) What is a sparse matrix?
(h) Mention any two applications of linked lists.
(i) Mention any two applications of stack.
(j) What is the brute force  approach?

SECTION-B

2.       How a two dimensional matrix is represented in the memory of a computer? How  can  you  access  an  element a[i][j]  in  a  two  dimensional  matrix  of dimension m×n? Give the access formula in:

(i) Row-major  order

(ii) Column-major  order
3.       Order  the  following  functions by growth rate: N, N1.5, N2  ,  N log  log
N, N  log2 N,  N  log  (N2),  2/N,  2N,  2N/2,  37,  N2  log  N,  N3.
Indicate  which functions grow at the same rate.

4.       Explain  the  merging  of  two  linked lists  (exiting  in  ascending  order)  to generate  a sorted list.

5.       How  can  a  sparse  matrix  be represented  as  an  array?  Discuss  addition, multiplication and transpose operations on a linked list.

6.       Explain binary search with the help of an illustrative example.

7.       Discuss various Pre-order, Post-order and In-order tree traversal algorithms.