## Basic Mathematics-1, Question Paper of BSC IT 1st Semester,Download Previous Years Question Paper 2

• Tuesday, December 08, 2015
• • ,
• No comments

Roll  No……….
Total  No.  of Questions :  07

B.Sc.  (IT)  (Sem.–1st)
BASIC   MATHEMATICS-I
Subject Code: BS-103
Paper ID:  [B0402]

Time :  3  Hrs.                                                              Max.  Marks :  60

INSTRUCTION  TO  CANDIDATES  :
1. SECTION-A  is  COMPULSORY  consisting  of  TEN  questions  carrying TWO  marks  each.
2. SECTION-B  contains  SIX  questions carrying  TEN marks  each  and  students has  to  attempt  any  FOUR  questions.
SECTION-A
l. Write  briefly :
(a) Prove  that A U = A.
(b) Define power set with an example.
(c) Find the value of sin .
(d) If A = , and B = .  Find  3A  –  2B.
(e) Find  the nth term of the sequence
5,    2,  –  1, –  4,  –  7,  ....
(f) Define median.  Give formula to compute median in continuous series.
(g) Evaluate 10C1 + 10C2 + 10C3 +....  +10C10 .
(h) Define minors and Co-factors of determinant.
(i) The  following  table  gives  the marks  obtained  by  B.  Com.  Students       with Roll. No. 1  to 10. Obtain average  marks of the  students.

 Roll No. 1 2 3 4 5 6 7 8 9 10 Marks 43 48 65 57 31 60 37 48 78 59
(j) Explain the relationship between A.M. and G.M.
SECTION-B
2.       What  is  Frequency distribution table? Explain  the  various  kinds  of  class
intervals in which data can be arranged in a Frequency distribution.
3.       If the pth, qth, rth  terms  of  a  G.P.  are x,  y,  z  respectively.  Prove  that
xq – r  . yr  – p  . zp – q  =  1.
4.       Show that 5.       If A,  B  and  C are  three sets, then  prove  that
A (B  –  C)  =  (A B)  –  (A C).
6.       Find  the coefficient  of x–2 in 8.

7.       For  two  matrices  A  and  B,  A = , B = 0  2 ,  verify           that  (AB)T = BT  . AT