## Download Question Paper of "Business Statistics 2 B.Com" , Question Paper of B.Com 2nd Semester, Subject Code : BCOP-204, Paper ID B1120, Paper 3

• Tuesday, June 28, 2016
• • ,
• No comments

Roll  No.......................
Total  No.  of  Questions  :  07
B.Com.  (Sem.–2nd)
Subject  Code  :  BCOP-204    (2011  &  Onward)
Paper  ID  :  [B1120]
Time  :  3  Hrs.
INSTRUCTION  TO  CANDIDATES  :
1. SECTION-A  is  COMPULSORY  consisting  of  TEN  questions  carrying TWO  marks  each.
2. SECTION-B  contains  SIX  questions carrying  TEN marks  each  and  students has  to  attempt  any  FOUR  questions.

SECTION-A

a. Distinguish between continuous and discrete variables.
b. What is the difference between descriptive and inferential statistics?
c. Define  secondary  data. What are the sources of secondary data?
d. What do you mean by a frequency distribution?
e. What purpose does classification of data serve?
f. What is the difference between bar chart and histogram?
g. What is the function of calculating measures of central tendency?
h. Compare mean, median and mode.
i. Distinguish between positive and negative Skegness.
j. Which  of  the  two,  correlation  and  regression  analysis,  has  more practical significance?
SECTION-B

2.       Discuss the main functions and limitations of statistics. Discuss the important causes of misuse of statistics.

3.       Define secondary data.  What are the  sources of secondary data? Describe the precautions required for using secondary data.

4.       What  do  you  mean  by a  frequency  distribution?  Distinguish  between  a discrete frequency  distribution  and a  continuous  frequency  distribution. Give examples.

5.       For  the following data predict sales for year 2009 and  interpret  the trend line

 Year 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 Sale (Rs million) 7.84 12.26 13.11 15.78 21.29 25.68 23.8 26.43 29.16 33.06

6.       Explain the concept  of regression.  What is its importance in the business and economic decision making?

7.       How  to  decompose  time-series  data  into  their  various  elements  and  to forecast by using decomposition techniques?